Cohesin plays a dual role in gene regulation and sister-chromatid cohesion during meiosis in Saccharomyces cerevisiae.

نویسندگان

  • Weiqiang Lin
  • Mian Wang
  • Hui Jin
  • Hong-Guo Yu
چکیده

Sister-chromatid cohesion mediated by cohesin ensures proper chromosome segregation during cell division. Cohesin is also required for postreplicative DNA double-strand break repair and gene expression. The molecular mechanisms of these diverse cohesin functions remain to be elucidated. Here we report that the cohesin subunits Scc3 and Smc1 are both required for the production of the meiosis-specific subunit Rec8 in the budding yeast Saccharomyces cerevisiae. Using a genetic approach, we depleted Scc3 and Smc1 independently in cells that were undergoing meiosis. Both Scc3- and Smc1-depleted cells were inducible for meiosis, but the REC8 promoter was only marginally activated, leading to reduced levels of REC8 transcription and protein production. In contrast, the expression of MCD1, the mitotic counterpart of REC8, was not subject to Scc3 regulation in vegetative cells. We provide genetic evidence to show that sister-chromatid cohesion is not necessary for activation of REC8 gene expression. Cohesin appears to positively regulate the expression of a variety of genes during yeast meiosis. Our results suggest that the cohesin complex plays a dual role in gene regulation and sister-chromatid cohesion during meiotic differentiation in yeast.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separase is required for chromosome segregation during meiosis I in Caenorhabditis elegans

BACKGROUND Chromosome segregation during mitosis and meiosis is triggered by dissolution of sister chromatid cohesion, which is mediated by the cohesin complex. Mitotic sister chromatid disjunction requires that cohesion be lost along the entire length of chromosomes, whereas homolog segregation at meiosis I only requires loss of cohesion along chromosome arms. During animal cell mitosis, cohes...

متن کامل

Recombination protein Tid1p controls resolution of cohesin-dependent linkages in meiosis in Saccharomyces cerevisiae

Sister chromatid cohesion and interhomologue recombination are coordinated to promote the segregation of homologous chromosomes instead of sister chromatids at the first meiotic division. During meiotic prophase in Saccharomyces cerevisiae, the meiosis-specific cohesin Rec8p localizes along chromosome axes and mediates most of the cohesion. The mitotic cohesin Mcd1p/Scc1p localizes to discrete ...

متن کامل

Chromosome Morphogenesis: Condensin-Dependent Cohesin Removal during Meiosis

During meiosis, segregation of homologous chromosomes necessitates the coordination of sister chromatid cohesion, chromosome condensation, and recombination. Cohesion and condensation require the SMC complexes, cohesin and condensin, respectively. Here we use budding yeast Saccharomyces cerevisiae to show that condensin and Cdc5, a Polo-like kinase, facilitate the removal of cohesin from chromo...

متن کامل

Genetic evidence that the acetylation of the Smc3p subunit of cohesin modulates its ATP-bound state to promote cohesion establishment in Saccharomyces cerevisiae.

Sister chromatid cohesion refers to the process by which sister chromatids are tethered together until the metaphase-to-anaphase transition. The evolutionarily conserved cohesin complex mediates sister chromatid cohesion. Cohesin not only ensures proper chromosome segregation, but also promotes high-fidelity DNA repair and transcriptional regulation. Two subunits of cohesin (Smc1p, Smc3p) are m...

متن کامل

Identification of Xenopus SMC protein complexes required for sister chromatid cohesion.

The structural maintenance of chromosomes (SMC) family is a growing family of chromosomal ATPases. The founding class of SMC protein complexes, condensins, plays a central role in mitotic chromosome condensation. We report here a new class of SMC protein complexes containing XSMC1 and XSMC3, Xenopus homologs of yeast Smc1p and Smc3p, respectively. The protein complexes (termed cohesins) exist a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 187 4  شماره 

صفحات  -

تاریخ انتشار 2011